Lower Bounds

I 090909090000
T.S. Jayram (IBM Almaden)

MADALGO Summer School
Lecture II



Outline

oL

O Probabilistic Streams

0 Read /Write Streams




L distances

For x, y lIp Un,

n{¥ |ne @ pa{r{1¥ |1

Sketching protocol for L_:

n{¥ |ng » n{¥ |ng» qg;n{¥ |ng

0 Divide input into blocks of size n*®
0 Use AMS sketch for each block
>n'* space

2 n¢ factor approximation



L., Promise Problem (GapL._ )

YES: |[x—yl|s >m, m>2

NO: [lx—ylla <1

a4 N

Theorem. [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

/4

The C.C. of GapL__ is 1I 50%
- /




Direct-Sum methodology

. Define the small problem

DIST(u,v):
YES: [u-v| >m
NO: |u-v| <1

Note:
GapL,(x,y) = V; DIST(x;,y;)




Direct-Sum methodology

1. Define an appropriate
conditionally independent input
distribution

Distribution K for DIST:
o (U,V,D,S)~K
o ULV~D,S

o (U,V)is a NO instance
. |U-V| <1




Direct-Sum methodology

Der {1}
S e {0,....m-1}

If D = —, then 0
U=S,V e, {S,S+1} 1

If D = |, then 2

U g {S,S+1}, V = S+1




Direct-Sum methodology

O Distribution p for instances of
GapL_ is defined to be n
independent copies of kK

O This always produces NO instances
of GapL__




Direct-Sum methodology

1. Apply Direct-Sum Theorem

IC (GapL,) > n - IC (DIST)

A0
1 produces NO
instances for
GapL_
0] | 0
DIST DIST DIST DIST | Conditional
/\ /\ /\ /\ independence




Direct-Sum methodology

1v. Show that the information
complexity of DIST is (1 /m?)

Let P be a protocol for DIST
Define (U,V,D,S) ~ kK
UlLV|D,S




Information Cost of P ., , &

[(UV:P|D,S) <

= (1/2m) -

2 (U, V: P |

Binary
Valued




Hellinger Distance

O0Z1s a binary r.v.
0Q(Z,R) 1s another r.v
0Z 1 R

O Q(OyR) ™~ QO
0Q(1,R) ~ Q,
oThen, I(Z : Q(Z,R)) > h2(Q,,0Q,)




Information Cost of P

I[(U,V: P(U,V) | D,S)

=(1/2m) - 2, [(V:P(s,V) | D=-,S =)
+ [(U:PU,s+1) | D=], S=5)

Z (1/21’1’1) ) Zs. hQ(Ps,S? 1Ds,s+1) T hQ(PS,s+19 1Ds+1,s+1)

> (1/2m?) - h*(Pyg, Ppyp)
[Cauchy-Schwartz and Metric]




After some elementary calculations...

DKK. 5,492,050 question:

Why should P,, and P, , be far apart?

® (0,0) and (m,m) are both NO
instances




Z-Lemma

P is deterministic:
P(x,y) = t = P(u,v)
= P(x,v) =t = P(y,v)

P is randomized:
hQ(ny? Puv) O
/a (h?(P,y, Py,) + h*(P, Py

Xy?

(Hint: Use AM-GM)




Finishing 1t up

By Z-Lemma,
h?*(P(x,y), P(u,v)) O
Y4 (h?(P(0,0), P(0,m))
+ h?(P(m,0), P(m,m))

The latter two quantities are both (1)
I(U,V:PU,V) | D,S)

> (1/2m?) - h*(Pyg, Prypm)

= Q(1/m?)




Other applications

[Jayram,Kumar,Sivakumar]

Rand. C.C. LB for “AND-OR tree” function

[Jain, Radhakrishnan, Sen]

Extended direct-sum paradigm to quantum
C.C and obtained 1.b.’s for set-disjointness




Estimating Statistical Aggregates
on Probabilistic Data Streams



Motivation: Probabilistic Data

0O Data that is incomplete,
imprecise, error-prone

O Probabilistic data is
everywhere

» Automated data
extraction:
o Emails, Web page, Blogs

= Recommendation ﬂ—‘“ | e
systems -
o Fuzzy, incomplete ratings i i

e o
whas | WAEIOO! MAIL (5005 T
e

L=

o Sensor data '§ s

........

= Data cleansing [




Probabilistic Databases

O Avatar Semantic Search (IBM)
0 HeisenData (Intel/Berkeley)

O MystiQ (U Washington)

0 Orion (Purdue)

O Trio (Stanford)

0 Others...




How do we calculate aggregates?

0 Given database of probabilistic data,
can we compute simple aggregates
efficiently?

oSUM, COUNT, MIN, MAX
o0 MEDIAN

OAVG

O DISTINCT (F)

0 REPEAT-RATE (F,)




Probabilistic stream

I].’lpllt: (ah pl)? (a27 p2)9 (anapn)

0 Means w.p. p;, the it item in stream
has value a.
= Otherwise, not in stream

0O Generally, want expected value of
aggregate




Notation

Input: (alapl)a (327p2)9 *ce (an,pn)

Define XY

O with probability p;
mY. =1 and X, = g,

Owith probability 1-p,
mY, =0 and X, =0

O0X. and Y, are correlated




SUM and COUNT

COUNT = E[2; X] = 2 p; [Linearity_of ]
SUM = E[Z1 Xi] — Zi a. p; Expectation

O Easy to compute in one pass




AVERAGE

AVG = E[2; X; / 2; Y]]
Linearity of expectation fails!

0O It can be shown that Q(n) space is
needed to compute AVG exactly




Approximating AVG

O Easy approximation

AVG ~ SUM/COUNT

» Works well when COUNT is large (use
Chernoff’s bound)

m What about small COUNT?




Generating Functions

0 Suppose we want to compute

S
H 4, 1\1

0 Define the generating function

j+l. e H 4.54 \1 J{

0 Required answer g(1)




Calculus

Take the derivative of g(x)

~

[
H 7+4 .

k S ll

\1, f .



Implication

gx) =1L (p;x+1-p)
for any x, g’(x) can be computed in one
pass

Further, we know

. I
< : 4 23
H - ~; @ i+4, @ 3 3{,9{

O Need to calculate an integral over a
data stream!




The integral for AVG

w,
|.<
C,
D
A
_I_
IS
|.|.|<:
0
=
g
A

DYJ @ j+},k+},9}

O Taylor approximation for h(z) is fine
O Taylor approximation for g(z) is horrible
0 BUT approximation for log g(z) can work!



Read/Write Streams




What happens If...

O There are multiple streams ?

0 The algorithms can modify the
streams ?

0 Modern memory organization
» Main memory: fast and scarce

» Disk memory : slow and ab
Random access is very costly

Sequential access is cheaps
= E.g., Cache prefetching

0 Disk Memory is Read /Write

Not true for
data streams



Beyond Data Streams

O Efficient access to external memory is
possible in restricted ways

m [/O rates for sequential read /write access to
disks are as good as random access to main
memory

0 New models of I/O-efficient computing

» W-streams [Demetrescu, Finocchi, Ribichini]

m Read/write streams [Grohe,Schweikardt; Grohe,Hernich,
Schweikardt]

B Stream-Sort [Aggarwal,Datar,Rajagopalan,Ruhl]
m Map-reduce [Dean,Ghemawat]




Read/Write Streams

t /

streams < ( K

.

Machine Memory

0O Also called Reversal Turing Machines




Critical Resources

O #tapes t

O space s

0O No constraint on the length of streams
O But #reversals is at most r

=> (r,s,t) read /write stream algorithm




Read/write Streams are Powerful

O Sorting can be done with O(log N)
passes (variant

m space 1s O(1)
® 3 Read/Write streams

» After sorting, computing frequency
moments takes 1 pass and O(log N) space

Data stream algorithms require N1
passes to approximate F, for k>2




But...

O O(log N) passes is a lot!

0 What if the Read /Write stream
algorithm has o(log N) passes?




Read/write Stream Lower Bounds

0 o(log N) passes implies N1 space for
deterministic algorithms:
m Sorting [Grohe-Schweikardt]

0 o(log N) passes implies N©(1) space for one-
sided error algorithms:
» Set Equality [Grohe-Hernich-Schweikardt]

Oo(log N/loglog N) passes implies near
Q(N) space for two-sided error algorithms:
» Set Disjointness [Beame-Jayram-Rudra]




Set Disjointness

0 Given sets A and B as characteristic vectors
mIsANB=07?
m A, Be{0,1N

0 Communication complexity = Q(N)
» yields Q(N) space LBs for data streams

0O Easy for a Read /Write Stream algorithm

a
4
\% b, b,




Key ldea

0 Keep the first vector (a,,...,a,) and
permute the second vector (b,,..,b_)

0 Any Read /Write Stream algorithm with
few passes cannot “compare” many
pairs (a;,b))

» Can “mix and match” values in this pair

O Develop a new combinatorial structural

property to formalize this intuition
m [Grohe,Schweikardt; Grohe,Hernich, Schweikardt]




Hard Instances

0 Disj(A,B) =0 iff A N B =£4 has low o
m AB e {0,1}N “sortedness”

. . . s Sortedness: longest
O DISJ (AaB) o Vj DISJ (Ai:Bj monotone subsequence

m N=nm !
0O Reorder pairs of blocks?\/

compared by permutation ¢ on

{1,...,m} N
A T A

Disjt(A,B) = A | A An

Vi DiSj(Ai,Bd)(i)) B B, | By | T B,




Skeletons

00 Describes the information flow in
terms of the locations of elements that
are compared

______________________________________________________________________________________________________

B Bow| Bogy| Booy | T B




Formally,

Given a skeleton
®m There exists many indices i€{l,...,m}
= For every assignment to (A;,B;), j# 1

= Inputs of the skeleton projected to (i,¢(i))
is a rectangle

» The rectangles do not form a partition of
the inputs of the skeleton




Fundamental Theorem of R/W Streams

/ Theorem. I

The skeletons partition the input domain such that

(1) #skeletons is “small”

(2) output depends only on the skeleton

(3) Each skeleton satisfies a weak rectangle-like

\property /




Direct-Sum

0 Given f: {0,1}"x {0,1}"— {0,1}

0 Permutation ¢ on {1,...,m} with low
sortedness
® XOR¢ (A AnBy, - ,BL) = @ (A By)
= OR;4(Ay,....ApBy,....B) = V f(A,By)




Hardness measures for functions

of:{0,1}"x{0,1}*—~ {0,1}

0 Hardness measure for 2-sided lower
bounds
Os and 1s

= Defined on rectangles

» f has low discrepancyll
» f has low corruption :.:

Set disjointness




Results

Of has low discrepancy or corruption

» o(log mn) passes implies large space for
XOR;

O If f has low corruption

» o(log(mn)/loglog(mn)) passes implies large
space for OR¢ ,




Remarks

O Currently, our direct-sum framework
works for primitive functions that
have high discrepancy or corruption

® Open problem: derive an information
complexity based approach

» Application: frequency moments

0 We consider two kinds of composition
operators: @ and V

O Yields lower bounds for Intersection
Size Mod 2 (Inner Product)
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