Lower Bounds

T.S. Jayram (IBM Almaden)

MADALGO Summer School Lecture II

Outline

 $\square L_{\infty}$

Probabilistic Streams

Read/Write Streams

 L_{∞} distances

For x, y \mathfrak{W} Uⁿ, $n{ \ \ } n{ \ \ } n_4 @ p d{ \ } r{_1 \ } |_1$ Sketching protocol for L_{∞} : $n{ | n_4 \gg n{ | n_5 \gg \overline{q} | n_4 | n_4 }$ **Divide input into blocks of size** $n^{4\epsilon}$ □ Use AMS sketch for each block $\rightarrow n^{1-4\epsilon}$ space $\rightarrow n^{\epsilon}$ factor approximation

L_{∞} Promise Problem (GapL_{∞})

YES: $||x - y||_4 \ge m, m \ge 2$

NO: $||x - y||_4 \le 1$

Theorem. [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar] The C.C. of GapL_{∞} is fi $\frac{q}{p^5}'$

I. Define the small problem

```
\begin{array}{l} DIST(u,v):\\ YES: \ \left| u-v \right| \ \geq m\\ NO: \ \left| u-v \right| \ \leq 1 \end{array}
```

```
Note:

GapL_{\infty}(x,y) = \bigvee_{i} DIST(x_{i},y_{i})
```

- II. Define an appropriate conditionally independent input distribution
- Distribution κ for DIST:
- $\square \quad (U,V,D,S) \sim \kappa$
- $\square \quad U \perp V \sim D,S$
- U(U,V) is a NO instance
 - $|U V| \leq 1$

Distribution μ for instances of GapL_∞ is defined to be n independent copies of κ

□ This always produces NO instances of $GapL_{\infty}$

III. Apply Direct-Sum Theorem

 μ produces NO instances for GapL_{∞}

Conditional

independence

IV. Show that the information complexity of DIST is $\Omega(1/m^2)$

Let P be a protocol for DIST Define $(U,V,D,S) \sim \kappa$ $U \perp V \mid D,S$

Hellinger Distance

□ Z is a binary r.v. □ Q(Z,R) is another r.v □ Z \perp R

□ Q(0,R) ~ Q₀ □ Q(1,R) ~ Q₁ □ Then, I(Z : Q(Z,R)) ≥ $h^2(Q_0,Q_1)$

Information Cost of P

I(U,V : P(U,V) | D,S)

= $(1/2m) \cdot \sum_{s} I(V : P(s,V) | D = -, S = s)$ + I(U : P(U,s+1) | D = |, S = s)

 \geq (1/2m) $\cdot \sum_{s} h^2(P_{s,s}, P_{s,s+1}) + h^2(P_{s,s+1}, P_{s+1,s+1})$

 $\geq (1/2m^2) \cdot h^2(P_{00}, P_{mm}) \\ \mbox{[Cauchy-Schwartz and Metric]}$

After some elementary calculations...

DKK. 5,492,050 question:

Why should P_{00} and P_{mm} be far apart? O(0,0) and (m,m) are both NO instances

Z-Lemma

P is deterministic: P(x,y) = t = P(u,v) $\rightarrow P(x,v) = t = P(y,v)$

P is randomized: h²(P_{xy}, P_{uv}) O ¹/₄ (h²(P_{xy}, P_{xv}) + h²(P_{uy}, P_{uv}) (Hint: Use AM-GM) Finishing it up

By Z-Lemma, $h^{2}(P(x,y), P(u,v)) \bigcirc$ $\frac{1}{4} (h^{2}(P(0,0), P(0,m))$ $+ h^{2}(P(m,0), P(m,m))$

The latter two quantities are both $\Omega(1)$ I(U,V : P(U,V) | D,S) $\geq (1/2m^2) \cdot h^2(P_{00}, P_{mm})$ = $\Omega(1/m^2)$

Other applications

[Jayram,Kumar,Sivakumar] Rand. C.C. LB for "AND-OR tree" function

[Jain, Radhakrishnan, Sen]

Extended direct-sum paradigm to quantum C.C and obtained l.b.'s for set-disjointness

Estimating Statistical Aggregates on Probabilistic Data Streams

Motivation: Probabilistic Data

- Data that is incomplete, imprecise, error-prone
- Probabilistic data is everywhere
 - Automated data extraction:
 - Emails, Web page, Blogs
 - Recommendation systems
 - Fuzzy, incomplete ratings
 - Inherently noisy
 - Sensor data
 - Data cleansing

Probabilistic Databases

- Avatar Semantic Search (IBM)
- HeisenData (Intel/Berkeley)
- MystiQ (U Washington)
- Orion (Purdue)
- Trio (Stanford)

□ Others...

How do we calculate aggregates?

Given database of probabilistic data, can we compute simple aggregates efficiently?

SUM, COUNT, MIN, MAX
MEDIAN
AVG
DISTINCT (F₀)
REPEAT-RATE (F₂)

Probabilistic stream

Input: $(a_1, p_1), (a_2, p_2), \dots (a_n, p_n)$

- Means w.p. p_i, the ith item in stream has value a_i
 - Otherwise, not in stream

Generally, want expected value of aggregate

Notation

Input: $(a_1, p_1), (a_2, p_2), ..., (a_n, p_n)$

Define X,Y
with probability p_i
Y_i = 1 and X_i = a_i
with probability 1-p_i
Y_i = 0 and X_i = 0
X_i and Y_i are correlated

SUM and COUNT

COUNT =
$$E[\sum_{i} X_{i}] = \sum_{i} p_{i}$$

SUM = $E[\sum_{i} X_{i}] = \sum_{i} a_{i} p_{i}$

• Easy to compute in one pass

AVERAGE

AVG = E[$\sum_{i} X_{i} / \sum_{i} Y_{i}$]

Linearity of expectation fails!

It can be shown that Ω(n) space is needed to compute AVG exactly

Approximating AVG

- Easy approximation AVG ≈ SUM/COUNT
 - Works well when COUNT is large (use Chernoff's bound)
 - What about small COUNT?

Generating Functions

Required answer g(1)

Calculus

Take the derivative of g(x)

$$j^{3}+\{, @ H^{7}+4 . [\ \ 1, f = \frac{4}{4 . 1 \ 1} f \{ 1, f = \frac{4}{4 . 1 \$$

Implication

g'(x) = ∏_i (p_i x + 1 - p_i) for any x, g'(x) can be computed in one pass

□ Further, we know

$$H = \frac{4}{4 \cdot 1} = \frac{1}{1} = \frac{1}{1$$

Need to calculate an integral over a data stream!

The integral for AVG

Taylor approximation for h(z) is fine
Taylor approximation for g(z) is horrible
BUT approximation for log g(z) can work!

Read/Write Streams

There are multiple streams ?
The algorithms can modify the streams ?

- Modern memory organization
 - Main memory: fast and scarce
 - Disk memory : slow and abut Not true for
 - Random access is very costly ata streams
 - Sequential access is cheap
 - E.g., Cache prefetching
- Disk Memory is Read/Write

Beyond Data Streams

- Efficient access to external memory is possible in restricted ways
 - I/O rates for sequential read/write access to disks are as good as random access to main memory
- New models of I/O-efficient computing
 - W-streams [Demetrescu, Finocchi, Ribichini]
 - Read/write streams [Grohe,Schweikardt; Grohe,Hernich, Schweikardt]
 - Stream-Sort [Aggarwal, Datar, Rajagopalan, Ruhl]
 - Map-reduce [Dean,Ghemawat]

Read/Write Streams

Also called Reversal Turing Machines

Critical Resources

- #tapes t
- □ space s
- No constraint on the length of streams
 But #reversals is at most r

→ (r,s,t) read/write stream algorithm

Read/write Streams are Powerful

Sorting can be done with O(log N) passes (variant

- space is O(1)
- 3 Read/Write streams
- After sorting, computing frequency moments takes 1 pass and O(log N) space

Data stream algorithms require $N^{\Omega(1)}$ passes to approximate F_k for k>2

$\Box \Theta(\log N)$ passes is a lot!

■ What if the Read/Write stream algorithm has o(log N) passes?

Read/write Stream Lower Bounds

- \Box o(log N) passes implies $N^{\Omega(1)}$ space for deterministic algorithms:
 - Sorting

[Grohe-Schweikardt]

- o(log N) passes implies N^{Ω(1)} space for onesided error algorithms:
 - Set Equality [Grohe-Hernich-Schweikardt]
- o(log N/loglog N) passes implies near
 Ω(N) space for two-sided error algorithms:
 Set Disjointness [Beame-Jayram-Rudra]

Set Disjointness

Given sets A and B as characteristic vectors

- Is $A \cap B = \emptyset$?
- A, B $\in \{0,1\}^{\mathbb{N}}$
- **\Box** Communication complexity = $\Omega(N)$
 - yields $\Omega(N)$ space LBs for data streams

Easy for a Read/Write Stream algorithm

Key Idea

- Keep the first vector (a₁,...,a_n) and permute the second vector (b₁,...,b_n)
- Any Read/Write Stream algorithm with few passes cannot "compare" many pairs (a_i,b_i)
 - Can "mix and match" values in this pair

- Develop a new combinatorial structural property to formalize this intuition
 - [Grohe,Schweikardt; Grohe,Hernich, Schweikardt]

Hard Instances

■ Disj(A,B) =0 iff A \cap B = ϕ has low • A,B $\in \{0,1\}^{\mathbb{N}}$ "sortedness"

- Disj(A,B) = V_i Disj(A_i,B_i Sortedness: longest monotone subsequence
 N= nm
- Reorder pairs of blocks to compared by permutation \$\overline\$ on \$\{1,...,m\}\$

Skeletons

Describes the information flow in terms of the locations of elements that are compared

Formally,

Given a skeleton

- There exists many indices $i \in \{1, ..., m\}$
- For every assignment to $(A_j, B_{\phi(j)}), j \neq i$
- Inputs of the skeleton projected to (i, \u03c6(i)) is a rectangle
- The rectangles do not form a partition of the inputs of the skeleton

Fundamental Theorem of R/W Streams

Theorem.

The skeletons partition the input domain such that

(1) #skeletons is "small"

(2) output depends only on the skeleton

(3) Each skeleton satisfies a weak rectangle-like property

Direct-Sum

- **Given f:** $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$
- Permutation \u00f6 on \u00e41,...,m\u00e3 with low sortedness
 - $XOR_{f,\phi}(A_1,...,A_m,B_1,...,B_m) = \bigoplus f(A_i,B_{\phi(i)})$ $OR_{f,\phi}(A_1,...,A_m,B_1,...,B_m) = \bigvee f(A_i,B_{\phi(i)})$

Hardness measures for functions

- □ f:{0,1}ⁿ×{0,1}ⁿ→ {0,1}
 □ Hardness measure for 2-sided lower bounds
 □ Defined on rectangles
 - f has low discrepancy

f has low corruptionSet disjointness

Results

f has low discrepancy or corruption
 o(log mn) passes implies large space for XOR_{f, \u03c6}

□ If **f** has low corruption

o(log(mn)/loglog(mn)) passes implies large space for OR_{f, \u03c6}

Remarks

Currently, our direct-sum framework works for primitive functions that have high discrepancy or corruption

Open problem: derive an information complexity based approach

Application: frequency moments

- We consider two kinds of composition operators: ⊕ and ∨
- Yields lower bounds for Intersection Size Mod 2 (Inner Product)