
Lower Bounds

T.S. Jayram (IBM Almaden)

MADALGO Summer School
Lecture II



Outline

L∞

Probabilistic Streams

Read/Write Streams



L∞ distances

For x, y Rn, 

Sketching protocol for L∞:

Divide input into blocks of size n4ε

Use AMS sketch for each block
n1-4ε space
nε factor approximation

‖x − y‖∞ = m ax
i

|xi− yi|

‖x − y‖∞ ≤ ‖x − y‖2 ≤
√
n ·‖x − y‖∞



L∞ Promise Problem (GapL∞)

YES : 

NO:

kx− yk∞ ≥ m, m ≥ 2

kx− yk∞ ≤ 1

Theorem. [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

The C.C. of GapL∞ is Ω
(
n
m 2

)



Direct-Sum methodology

I. Define the small problem

DIST(u,v):
YES: |u – v| ≥ m 
NO:   |u – v| ≤ 1

Note: 
GapL∞(x,y) = Çi DIST(xi,yi)



Direct-Sum methodology

II. Define an appropriate 
conditionally independent input 
distribution

Distribution κ for DIST:

(U,V,D,S) ∼ κ
U ⊥ V ∼ D,S
(U,V) is a NO instance

|U – V| ≤ 1



Direct-Sum methodology

D ∈R {–,|}
S ∈R {0,…,m-1}

If D = –, then
U = S, V ∈R {S,S+1}

If D = |, then
U ∈R {S,S+1}, V = S+1

U

V
0 1 m2 3

0

1

m

2

3



Direct-Sum methodology

Distribution μ for instances of 
GapL∞ is defined to be n
independent copies of κ

This always produces NO instances 
of GapL∞



Direct-Sum methodology

III. Apply Direct-Sum Theorem

ICμ(GapL∞) ≥ n · ICκ(DIST)

μ produces NO 
instances for 
GapL∞

Conditional 
independence

… …

DISTDISTDIST DIST

X1 X2Y1 Y2 u

0 0 0

v Xn Yn



Direct-Sum methodology

IV. Show that the information 
complexity of DIST is Ω(1/m2)

Let P be a protocol for DIST
Define (U,V,D,S) ∼ κ

U ⊥ V | D,S



Information Cost of P

I(U,V : P | D, S)

= (1/2m) ·
∑s  I(U,V : P | D = –, S = s) 
+ I(U,V : P | D = |, S = s)

= (1/2m) ·
∑s  I(V : P(s,V) | D = –, S = s) 
+ I(U : P(U,s+1) | D = |, S = s)

Binary 
Valued

U

V
0 1 m2 3

0

1

m

2

3



Hellinger Distance

Z is a binary r.v. 
Q(Z,R) is another r.v
Z ⊥ R

Q(0,R) ∼ Q0

Q(1,R) ∼ Q1

Then, I(Z : Q(Z,R)) ≥ h2(Q0,Q1)



Information Cost of P

I(U,V : P(U,V) | D,S)

= (1/2m) · ∑s  I(V : P(s,V) | D = –, S = s) 
+ I(U : P(U,s+1) | D = |, S = s)

≥ (1/2m) · ∑s h2(Ps,s, Ps,s+1) + h2(Ps,s+1, Ps+1,s+1)

≥ (1/2m2) · h2(P00, Pmm)
[Cauchy-Schwartz and Metric]



After some elementary calculations…

DKK. 5,492,050 question:

Why should P00 and Pmm be far apart?

(0,0) and (m,m) are both NO
instances



Z-Lemma

P is deterministic:
P(x,y) = t = P(u,v) 

P(x,v) = t = P(y,v)

P is randomized:
h2(Pxy, Puv) 
¼ (h2(Pxy, Pxv) + h2(Puy, Puv)
(Hint: Use AM-GM)

x

u

yv



Finishing it up

By Z-Lemma,
h2(P(x,y), P(u,v)) 
¼ (h2(P(0,0), P(0,m)) 

+ h2(P(m,0), P(m,m))

The latter two quantities are both Ω(1)
I(U,V : P(U,V) | D,S)
≥ (1/2m2) · h2(P00, Pmm)
= Ω(1/m2)



Other applications
[Jayram,Kumar,Sivakumar]

Rand. C.C. LB for “AND-OR tree” function

[Jain, Radhakrishnan, Sen]

Extended direct-sum paradigm to quantum 
C.C and obtained l.b.’s for set-disjointness



Estimating Statistical Aggregates 
on Probabilistic Data Streams



Motivation: Probabilistic Data

Data that is incomplete, 
imprecise, error-prone
Probabilistic data is 
everywhere

Automated data 
extraction:

Emails, Web page, Blogs

Recommendation 
systems

Fuzzy, incomplete ratings

Inherently noisy
Sensor data

Data cleansing



Probabilistic Databases

Avatar Semantic Search (IBM)
HeisenData (Intel/Berkeley)
MystiQ (U Washington)
Orion (Purdue)
Trio (Stanford)

Others…



How do we calculate aggregates?

Given database of probabilistic data,
can we compute simple aggregates 
efficiently?

SUM, COUNT, MIN, MAX
MEDIAN 
AVG 
DISTINCT (F0)
REPEAT-RATE (F2)



Probabilistic stream

Input: (a1, p1), (a2, p2), … (an,pn)

Means w.p. pi, the ith item in stream 
has value ai

Otherwise, not in stream

Generally, want expected value of 
aggregate



Notation

Input: (a1,p1), (a2,p2), …, (an,pn)

Define X,Y
with probability pi

Yi = 1 and Xi = ai

with probability 1-pi
Yi = 0 and Xi = 0

Xi and Yi are correlated



SUM and COUNT

COUNT  = E[∑i Xi] = ∑i pi

SUM = E[∑i Xi] = ∑i ai pi

Easy to compute in one pass

Linearity of 
Expectation



AVERAGE

AVG = E[∑i Xi / ∑i Yi]

Linearity of expectation fails!

It can be shown that Ω(n) space is 
needed to compute AVG exactly



Approximating AVG

Easy approximation
AVG ≈ SUM/COUNT

Works well when COUNT is large (use 
Chernoff’s bound)
What about small COUNT?



Generating Functions

Suppose we want to compute

Define the generating function

Required answer g(1)

E
[

1
1+

∑
iYi

]

g(x)= E
[(

1
1+

∑
iYi

·x1+
∑

iYi
]



Calculus

Take the derivative of g(x)

g′(x) = E

⎡

⎣(1 +
∑

i

Yi)·
1

1 +
∑
iYi

)

·x
∑

iYi

⎤

⎦

= E
[
x
∑

iYi
]

= E

⎡

⎣
∏

i

xYi

⎤

⎦

=
∏

i

E
[
xYi

]

=
∏

i

(pix + 1 − pi)



Implication

g’(x) = ∏i (pi x + 1 - pi)
for any x, g’(x) can be computed in one 
pass

Further, we know

E
[

1
1+

∑
iYi

]

= g(1)=
∫1
0 g′(x)dx

Need to calculate an integral over a 
data stream!



The integral for AVG

AVG =
∫ 1

0

⎛

⎝
∏

i

(1 − piz)

⎞

⎠

⎛

⎝
∑

i

aipi
1 − piz

⎞

⎠ dz

AVG =
∫ 1

0
g(z)h(z)dz

Taylor approximation for h(z) is fine
Taylor approximation for g(z) is horrible
BUT approximation for log g(z) can work!



Read/Write Streams



What happens if…

There are multiple streams ?
The algorithms can modify the 
streams ?

Modern memory organization
Main memory: fast and scarce
Disk memory : slow and abundant

Random access is very costly
Sequential access is cheap

E.g., Cache prefetching

Disk Memory is Read/Write

Not true for 
data streams



Beyond Data Streams

Efficient access to external memory is 
possible in restricted ways

I/O rates for sequential read/write access to 
disks are as good as random access to main 
memory

New models of I/O-efficient computing
W-streams [Demetrescu, Finocchi, Ribichini]

Read/write streams [Grohe,Schweikardt; Grohe,Hernich, 

Schweikardt]

Stream-Sort [Aggarwal,Datar,Rajagopalan,Ruhl]

Map-reduce [Dean,Ghemawat]



Read/Write Streams

Also called Reversal Turing Machines

I n p u t

t 
streams

Machine Memory



Critical Resources

#tapes t
space s
No constraint on the length of streams
But #reversals is at most r

(r,s,t) read/write stream algorithm



Read/write Streams are Powerful

Sorting can be done with O(log N) 
passes (variant

space is O(1)
3 Read/Write streams
After sorting, computing frequency 
moments takes 1 pass and O(log N) space

Data stream algorithms require NΩ(1)

passes to approximate Fk for k>2



But…

Θ(log N) passes is a lot!

What if the Read/Write stream 
algorithm has o(log N) passes?



Read/write Stream Lower Bounds

o(log N) passes implies NΩ(1) space for 
deterministic algorithms:

Sorting [Grohe-Schweikardt]

o(log N) passes implies NΩ(1) space for one-
sided error algorithms: 

Set Equality [Grohe-Hernich-Schweikardt]

o(log N/loglog N) passes implies near  
Ω(N) space for two-sided error algorithms:

Set Disjointness [Beame-Jayram-Rudra]



Set Disjointness

Given sets A and B as characteristic vectors
Is A ∩ B = ∅ ?
A, B ∈ {0,1}N

Communication complexity = Ω(N)
yields Ω(N) space LBs for data streams

Easy for a Read/Write Stream algorithm

a1 a2 an b1 b2 bn

b1 b2 bn



Key Idea

Keep the first vector (a1,…,an) and 
permute the second vector (b1,..,bn)
Any Read/Write Stream algorithm with 
few passes cannot “compare” many 
pairs (ai,bi)

Can “mix and match” values in this pair

Develop a new combinatorial structural 
property to formalize this intuition

[Grohe,Schweikardt; Grohe,Hernich, Schweikardt]



Hard Instances

Disj(A,B) =0 iff A ∩ B = ∅
A,B ∈ {0,1}N

Disj(A,B) = Vi Disj(Ai,Bi)
N= nm

Reorder pairs of blocks to be 
compared by permutation φ on 
{1,…,m}

A

B
N

n

A1 A2 Am

B1 B2
Bm

Disjφ(A,B) = 
Vi Disj(Ai,Bφ(i))

φ has low 
“sortedness”

Sortedness: longest 
monotone subsequence



Skeletons

Describes the information flow in 
terms of the locations of elements that 
are compared

A

B

A1 A2 Am

Bφ(1) Bφ(2)
Bφ(m)

Ai

Bφ(i)



Formally,

Given a skeleton
There exists many indices i∈{1,…,m}
For every assignment to (Aj,Bφ(j)), j≠ i
Inputs of the skeleton projected to (i,φ(i))
is a rectangle
The rectangles do not form a partition of 
the inputs of the skeleton



Fundamental Theorem of R/W Streams

Theorem.

The skeletons partition the input domain such that

(1) #skeletons is “small”

(2) output depends only on the skeleton

(3) Each skeleton satisfies a weak rectangle-like 
property



Direct-Sum

Given f: {0,1}n× {0,1}n→ {0,1}
Permutation φ on {1,…,m} with low 
sortedness

XORf,φ

ORf,φ

(A1,…,Am,B1,…,Bm) = ⊕ f(Ai,Bφ(i))
(A1,…,Am,B1,…,Bm) = Ç f(Ai,Bφ(i))



Hardness measures for functions

f:{0,1}n×{0,1}n→ {0,1}
Hardness measure for 2-sided lower 
bounds

Defined on rectangles

f has low discrepancy

f has low corruption
Set disjointness

0s and 1s



Results

f has low discrepancy or corruption
o(log mn) passes implies large space for 
XORf, φ

If f has low corruption
o(log(mn)/loglog(mn)) passes implies large 
space for ORf, φ



Remarks

Currently, our direct-sum framework 
works for primitive functions that 
have high discrepancy or corruption

Open problem: derive an information 
complexity based approach
Application: frequency moments

We consider two kinds of composition 
operators: ⊕ and ∨
Yields lower bounds for Intersection 
Size Mod 2 (Inner Product)


	Lower Bounds
	Outline
	L1 distances
	L1 Promise Problem (GapL1)
	Direct-Sum methodology
	Direct-Sum methodology
	Direct-Sum methodology
	Direct-Sum methodology
	Direct-Sum methodology
	Direct-Sum methodology
	Information Cost of P
	Hellinger Distance
	Information Cost of P
	After some elementary calculations…
	Z-Lemma
	Finishing it up
	Other applications
	Estimating Statistical Aggregates on Probabilistic Data Streams
	Motivation: Probabilistic Data
	Probabilistic Databases
	How do we calculate aggregates?
	Probabilistic stream
	Notation
	SUM and COUNT
	AVERAGE
	Approximating AVG
	Generating Functions
	Calculus
	Implication
	The integral for AVG
	Read/Write Streams
	What happens if…
	Beyond Data Streams
	Read/Write Streams
	Critical Resources
	Read/write Streams are Powerful
	But…
	Read/write Stream Lower Bounds
	Set Disjointness
	Key Idea
	Hard Instances
	Skeletons
	Formally,
	Fundamental Theorem of R/W Streams
	Direct-Sum
	Hardness measures for functions
	Results
	Remarks

